Глава 8

Прямые и плоскости

8.1 Прямая на плоскости

8.1.1 Аффинные задачи

В этом разделе система координат аффинная.

- 1. Указать хотя бы один направляющий вектор прямой, заданной уравнением:
 - 1) y = kx + b;
 - 2) Ax + By + C = 0.
- **2.** Для прямой, заданной каноническим уравнением x = 2 t, y = -1 + 3t, составить ее общее уравнение и найти угловой коэффициент k.
- **3.** Записать параметрическое и каноническое уравнение прямой 2x 3y + 5 = 0.
- **4.** Записать уравнение прямой, проходящей через точку (2,3) и параллельной прямой:
 - 1) x = 5 3t, y = -4 + t;
 - $2) \ \frac{x+6}{3} = \frac{y-4}{-7};$
 - 3) 3x 5y + 2 = 0;
 - 4) x = -3;
 - 5) y = 0.
- 5. Записать уравнение прямой, проходящей через две заданные точки:
 - 1) (2,3), (5,1);
 - (-2,5), (-2,0);
 - 3) (1, -4), (7, -4).
- **6.** Установить, совпадают, параллельны или пересекаются две заданные прямые; в последнем случае найти точку пересечения:
 - 1) 2x 5y 5 = 0, 3x 8y 7 = 0;
 - 2) x y + 3 = 0, 3x 3y + 6 = 0;
 - 3) 2x y + 3 = 0, 2y 4x 6 = 0;
 - 4) (p) x = 2 t, y = 3 + 2t if x = 3 + t, y = -2 3t.

7. (р) Написать уравнение медианы \mathcal{AM} треугольника \mathcal{ABC} , если $\mathcal{A}(2,-5)$, $\mathcal{B}(3,1)$, $\mathcal{C}(-1,-7)$.

8.1.2 Метрические задачи

В этом разделе система координат декартовая прямоугольная.

- 8. Указать хотя бы один нормальный вектор для прямой, заданной уравнением
 - 1) y = kx + b;
 - 2) Ax + By + C = 0.
- **9.** Составить уравнение прямой, проходящей через точку (2, -8) и перпендикулярной заданной:
 - 1) 2x 5y 2 = 0;
 - $2) \ \frac{x+8}{5} = \frac{y-7}{2};$
 - 3) x = 6;
 - 4) y = 0.
- **10.** (р) Дана точка $\mathcal{M}(5, -8)$ и прямая 2x 3y + 5 = 0. Найти проекцию \mathcal{P} точки \mathcal{M} на прямую и точку \mathcal{N} , симметричную точке $\mathcal{M}(5, -8)$ относительно этой прямой.
- **11.** Найти расстояние от точки (2, -1) до прямой:
 - 1) 2x 3y 2 = 0;
 - 2) 3x + 4y 7 = 0;
 - 3) x = -5;
 - 4) y = 0.
- **12.** Найти расстояние между параллельными прямыми $Ax + By + C_1 = 0$ и $Ax + By + C_2 = 0$.
- 13. Найти угол между прямыми:
 - 1) x = 2 + 3t, y = -1 + 4t if x = -7 + t, y = 2 t;
 - 2) 4x 3y 3 = 0 и 7x + y + 6 = 0;
 - 3) 4x 5y 7 = 0 и 5x + 4y 11 = 0;
 - 4) x = 1 + 5t, y = 6 4t и 2x + y + 3 = 0;
 - 5) x 3y 7 = 0 и y = 1.
- **14.** (р) Составить уравнение высоты \mathcal{AH} треугольника \mathcal{ABC} , если $\mathcal{A}(-11,6)$, $\mathcal{B}(-3,-8)$, $\mathcal{C}(3,1)$. Найти координаты точки пересечения высоты с прямой \mathcal{BC} . Определить, внутри или снаружи стороны \mathcal{BC} лежит точка \mathcal{H} .
- **15.** (р) Составить уравнение биссектрисы, выходящей из угла \mathcal{A} треугольника \mathcal{ABC} , если $\mathcal{A}(5,-4)$, $\mathcal{B}(-1,-1)$, $\mathcal{C}(6,-2)$. Найти координаты точки пересечения биссектрисы со стороной \mathcal{BC} .
- **16.** (р) Уравнение одной из сторон угла 13x + 6y + 9 = 0, уравнение биссектрисы 4x + 5y 13 = 0. Найти уравнение второй стороны угла. Другая формулировка той же задачи: найти уравнение прямой, симметричной прямой 13x + 6y + 9 = 0 относительно 4x + 5y 13 = 0.

3

8.2 Плоскость и прямая в пространстве

8.2.1 Аффинные задачи

В этом разделе система координат аффинная

17. (р) Доказать, что координаты (α, β, γ) направляющего вектора прямой, заданной в виде пересечения двух плоскостей $A_1x + B_1y + C_1z + D_1 = 0$, $A_2x + B_2y + C_2z + D_2 = 0$, можно находить по правилу «векторного произведения»

$$\alpha = \begin{vmatrix} B_1 & C_1 \\ B_2 & C_2 \end{vmatrix}, \quad \beta = - \begin{vmatrix} A_1 & C_1 \\ A_2 & C_2 \end{vmatrix}, \quad \gamma = \begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix}.$$

не только в прямоугольной, но и в произвольной аффинной системе координат.

18. По параметрическому уравнению плоскости

$$\begin{cases} x = 1 + t_1 + 2t_2, \\ y = -2 + 3t_1 + 3t_2, \\ z = 3 - 3t_1 + t_2 \end{cases}$$

составить ее общее уравнение.

- **19.** По общему уравнению плоскости 2x 5y + 3z + 4 = 0 составить ее параметрическое уравнение.
- 20. Записать уравнение прямой

$$\begin{cases} x = 2t, \\ y = -2 - 2t, \\ z = 1 - 3t \end{cases}$$

в каноническом виде и в виде пересечения двух плоскостей.

21. Записать уравнение прямой

$$\begin{cases} 2x + 3y - 5z - 2 = 0, \\ x - 2y + 3z - 1 = 0, \end{cases}$$

в каноническом виде и параметрическом виде.

- **22.** Записать уравнение плоскости, проходящей через точку (2,3,-7) и параллельной плоскости:
 - 1) $x = 1 3t_1 + 5t_2$, $y = 3 + 4t_1 4t_2$, $z = 5 + t_1 4t_2$;
 - 2) -2x y + z + 5 = 0;
 - 3) z = 3.
- **23.** Записать уравнение прямой, проходящей через точку (2,3,-7) и параллельной прямой:

1)
$$\frac{x-3}{2} = \frac{y+1}{5} = \frac{z-2}{-1}$$
;

- 2) 2x 3y z 1 = 0, 3x z + 2 = 0;
- 3) x = 1, y = 5.
- 24. Записать уравнение прямой, проходящей через точки:
 - 1) (1,3,-3) и (2,-3,-5);
 - 2) (-4,5,5) и (0,5,-4);
 - (-1,5,-3) и (2,5,-3).
- 25. Записать уравнение плоскости, проходящей через точки:
 - 1) (2, -5, 4), (5, 2, 3), (3, -1, 2);
 - (-4,3,-2), (-3,-2,-1), (1,1,-1);
 - 3) (4, 2, 5), (2, -3, 1), (0, -8, -3).
- **26.** Записать уравнение медианы \mathcal{AM} треугольника \mathcal{ABC} , если $\mathcal{A}(2,1,9), \mathcal{B}(2,3,-5), \mathcal{C}(-4,-5,9).$
- **27.** Записать общее уравнение плоскости, отсекающей на координатных осях $\mathfrak{O}x$, $\mathfrak{O}y$, $\mathfrak{O}z$ в положительном октанте отрезки длиной 2, 3, 7 соответственно.
- **28.** Определить взаимное расположение плоскостей (совпадают, параллельны или пересекаются). В случае, если плоскости пересекаются, записать каноническое уравнение линии пересечения:
 - 1) 3x 5y + 7z 8 = 0 и 2x 3y + 4z 5 = 0;
 - 2) 2x 3y + 4z 7 = 0 и 4x 6y + 8z + 5 = 0;
 - 3) x 2y + 3z 2 = 0 и 6y 3x 9z + 6 = 0;
 - 4) $x = -2t_1 + 3t_2$, $y = 1 + t_1 + 2t_2$, $z = t_1$ if $x = -1 + 2t_1 + 2t_2$, $y = 6t_2$, $z = 1 t_1 + t_2$;
 - 5) $x = 2 + t_1 + 3t_2$, $y = 2 + t_1 + t_2$, $z = 3 + t_1 2t_2$ if $x = 2 + 4t_1 + 2t_2$, $y = 2 + t_1 t_2$, $z = 2 4t_1 4t_2$;
 - 6) $x = 1 + t_1 + 2t_2$, $y = 2 + 2t_1 + 2t_2$, $z = 1 5t_1 + t_2$ и $x = 3 + t_1 + t_2$, $y = 4 + 2t_2$, $z = 2 + 6t_1 5t_2$.
- **29.** Определить, лежит ли указанная прямая в плоскости 2x 3y + 5z 2 = 0, параллельна ей или пересекает ее в единственной точке; в последнем случае найти точку пересечения:
 - 1) $\frac{x-3}{6} = \frac{y+2}{-1} = \frac{z+2}{-3}$;
 - 2) $\frac{x-2}{1} = \frac{y-5}{-1} = \frac{z-3}{-1}$;
 - 3) x + 2y + 2z 1 = 0, 3x y + 7z 3 = 0;
 - 4) x + 3y 4z 3 = 0, 2x + 3y 4z 1 = 0;
 - 5) x = -2 + 2t, y = 2 t, z = 2 + t.
- **30.** Определить взаимное расположение плоскостей (совпадают, параллельны, пересекаются или скрещиваются); если прямые параллельны, то записать общее уравнение плоскости, в которой они лежат; если прямые пересекаются, то найти точку пересечения и записать общее уравнение плоскости, в которой они лежат:

8.2. ПЛОСКОСТЬ И ПРЯМАЯ В ПРОСТРАНСТВЕ

5

1)
$$\frac{x-1}{6} = \frac{y+2}{-2} = \frac{z+5}{4}$$
 $\frac{x-4}{-3} = \frac{y+3}{1} = \frac{z+3}{-2}$;

2)
$$x = 1 + t$$
, $y = 2 + 2t$, $z = -3 - 4t$ if $x = -1 - t$, $y = -1 - 3t$, $z = 4 + 5t$;

3)
$$x-2y-3z+1=0$$
, $2x-4y-5z+2=0$ if $x-2y-4z+7=0$, $x-2y-2z-2=0$;

4)
$$x = 1 - t$$
, $y = 1 - 5t$, $z = 2 - 3t$ и $x = 1 + 5t$, $y = 1 - 4t$, $z = 1 + 4t$;

5)
$$2x + y - z + 1 = 0$$
, $3x + 2y - 2z + 3 = 0$ if $x + 2y - z = 0$, $x + 3y - 2z + 3 = 0$.

- **31.** Составить уравнение плоскости, проходящей через точку (1,2,-3) и параллельной прямым $x+2y-4z+5=0,\ 2x+3y-3z-1=0$ и $y-z+4=0,\ x+2y-z+1=0.$
- **32.** Составить уравнение плоскости, проходящей через прямую $\frac{x-1}{1} = \frac{y-2}{-4} = \frac{z}{-4}$ и параллельной прямой $\frac{x-2}{2} = \frac{y+3}{-3} = \frac{z-4}{-5}$.
- **33.** Составить уравнение плоскости, проходящей через точку (2,-1,5) и прямую $\frac{x-4}{2} = \frac{y+2}{-3} = \frac{z-6}{4}.$
- **34.** (р) Составить уравнение прямой, проходящей через точку (-1, -4, 5) и пересекающую прямые $\frac{x-2}{1} = \frac{y-4}{2} = \frac{z+4}{-4}$ и $\frac{x-2}{2} = \frac{y-1}{3} = \frac{z+3}{-5}$.
- **35.** (р) Составить уравнение прямой, пересекающей прямые $\frac{x+5}{4} = \frac{y-3}{-5} = \frac{z-3}{-1}$ и $\frac{x+3}{5} = \frac{y-3}{-3} = \frac{z+1}{-3}$ и параллельной прямой $\frac{x-7}{1} = \frac{y}{-7} = \frac{z+3}{5}$.
- **36.** (р) Составить уравнения плоскостей, проходящих через прямую $\frac{x-3}{2} = \frac{y-2}{-3} = \frac{z+5}{5}$ и равноудаленных от точек $\mathcal{A}(3,-1,4)$ и $\mathcal{B}(1,3,-2)$.

8.2.2 Метрические задачи

В задачах данного раздела предполагается, что система координат прямоугольная.

- **37.** Составить уравнение прямой, проходящей через точку (1,2,3) и перпендикулярной плоскости:
 - 1) 2x 3y + 5z + 2 = 0;
 - 2) 2x z + 3 = 0;
 - 3) x = 5.
- **38.** Составить уравнение плоскости, проходящей через точку (1, -2, 2) и перпендикулярной прямой:

1)
$$\frac{x-2}{1} = \frac{y-1}{-2} = \frac{z+3}{4}$$
;

2)
$$2x + 4y - 5z - 7 = 0$$
, $x + y - 2z - 5 = 0$;

3)
$$x = 3, y = 0.$$

- **39.** Составить уравнение плоскости, перпендикулярной плоскости 3x-4y+z+9=0 и проходящей через прямую:
 - 1) $\frac{x+1}{2} = \frac{y-3}{-3} = \frac{z-5}{1}$;
 - 2) -x + 3y 2z = 0, x 2y + 3z 2 = 0;
 - 3) y = -3, z = 2.
- **40.** Найти геометрическое место точек, равноудаленных от точек (2, -3, 2) и (4, 1, 0).
- **41.** Найти расстояние от точки (-2, 1, 4) до плоскости:
 - 1) 2x 2y + z 3 = 0;
 - 2) x = 5.
- 42. Найти расстояние между параллельными плоскостями:
 - 1) 6x 2y + 3z 2 = 0, 6x 2y + 3z + 5 = 0;
 - 2) 4x 3z 7 = 0, 8x 6z + 6 = 0.
- **43.** Найти расстояние от точки (-1, -2, 4) до прямой:

1)
$$\frac{x-1}{3} = \frac{y+4}{-2} = \frac{z-9}{6}$$
;

2)
$$\frac{x+4}{2} = \frac{y}{-1} = \frac{z+2}{3}$$
;

- 3) x 2y z + 2 = 0, 2y + z + 2 = 0.
- 44. Найти расстояние между прямыми:

1)
$$\frac{x}{5} = \frac{y-1}{-2} = \frac{z+4}{3}$$
 $\frac{x+1}{3} = \frac{y-1}{-1} = \frac{z-1}{1}$;

2)
$$x+y-2z-3=0,\,2x-y-z=0$$
 и $2x-3y-14=0,\,z=3;$

3)
$$x - 3y + z + 3 = 0$$
, $3x + y - 3z + 3 = 0$ in $\frac{x - 1}{4} = \frac{y - 1}{3} = \frac{z - 2}{5}$.

- 45. Найти угол между прямыми:
 - 1) x = 1 + 2t, y = -2 + 2t, z = -5 t is x = -8 + t, y = 1 t, z = -2 + t;
 - 2) x-2y-2z-7=0, x+3y+z+3=0 if x+y+z-3=0, x+3y-z+5=0;

3)
$$\frac{x-2}{4} = \frac{y+1}{-3} = \frac{z-4}{8}$$
 II $\frac{x+2}{3} = \frac{y-5}{-4} = \frac{z-9}{-3}$;

4)
$$\frac{x-7}{1} = \frac{y+2}{1} = \frac{z-3}{-4}$$
 $\frac{x}{1} = \frac{y-2}{-1} = \frac{z-8}{4}$.

- 46. Найти угол между плоскостями:
 - 1) 3x + 3y + 2z 9 = 0 if -x + 3y + 15 = 0;
 - 2) $x = 2 + 3t_1 + 5t_2$, $y = 3 3t_1 3t_2$, $z = -7 + t_1 t_2$ и $x = 3t_1 + 7t_2$, $y = -4 + t_1 t_2$, $z = 5 + t_1 + t_2$;
 - 3) x + 6y 8z + 9 = 0 и 2x + y + z + 2 = 0;
 - 4) 3x + 3y z 9 = 0 и 9x + 9y 3z + 1 = 0.
- **47.** Найти угол между прямой $\frac{x-1}{2} = \frac{y+7}{-2} = \frac{z-5}{1}$ и плоскостью:
 - 1) 2x + 4y 5z 7 = 0;

- 2) 4x 4y + 2z + 9 = 0;
- 3) 2x + y 2z 4 = 0.
- **48.** Составить уравнение высоты \mathcal{AH} треугольника \mathcal{ABC} , если $\mathcal{A}(2,2,7)$, $\mathcal{B}(3,10,-1)$, $\mathcal{C}(-1,-2,3)$. Найти координаты точки пересечения высоты с прямой \mathcal{BC} . Определить, внутри или снаружи стороны \mathcal{BC} лежит точка \mathcal{H} .
- **49.** Составить уравнение биссектрисы, проведенной из вершины \mathcal{A} треугольника \mathcal{ABC} , если $\mathcal{A}(-3,-2,5)$, $\mathcal{B}(3,0,1)$, $\mathcal{C}(-2,0,2)$. Найти координаты точки пересечения биссектрисы с прямой \mathcal{BC} .

Контрольная работа

Даны точки А, В, С.

- а) Составить уравнение прямой \mathcal{AB} ;
- б) Спроецировать точку С на прямую АВ;
- в) Составить уравнение высоты треугольника АВС, выходящей из вершины С;
- г) Найти расстояние от точки С до прямой АВ;
- д) Составить уравнение медианы треугольника АВС, выходящей из вершины С;
- е) Составить уравнение средней линии треугольника \mathcal{ABC} , параллельной основанию \mathcal{AB} ;
- ж) Треугольник \mathcal{ABC} дополнен до параллелограмма \mathcal{ABCD} . Найти координаты точки \mathcal{D} ;
- з) Найти координаты проекции начала координат на треугольник ABC. Лежит ли эта точка внутри треугольника ABC?
- 1. $\mathcal{A}(-1,0,-2)$, $\mathcal{B}(7,-12,10)$, $\mathcal{C}(-7,-11,13)$;
- 2. $\mathcal{A}(2,2,2)$, $\mathcal{B}(-10,2,-6)$, $\mathcal{C}(-7,3,-4)$;
- 3. $\mathcal{A}(0,-2,2)$, $\mathcal{B}(-12,-2,6)$, $\mathcal{C}(-9,-4,5)$;
- 4. $\mathcal{A}(0,-1,-1)$, $\mathcal{B}(-4,-13,-1)$, $\mathcal{C}(-1,-4,0)$;
- 5. $\mathcal{A}(0,1,-1)$, $\mathcal{B}(-12,1,-9)$, $\mathcal{C}(-9,2,-7)$;
- 6. $\mathcal{A}(-2,0,-2)$, $\mathcal{B}(10,-8,-2)$, $\mathcal{C}(1,-2,-5)$;
- 7. $\mathcal{A}(1,0,-1)$, $\mathcal{B}(1,12,7)$, $\mathcal{C}(2,9,5)$;
- 8. $\mathcal{A}(2,2,0)$, $\mathcal{B}(-2,14,8)$, $\mathcal{C}(-5,5,-1)$;

9.
$$\mathcal{A}(-1, -2, -1), \mathcal{B}(-1, 10, -13), \mathcal{C}(5, 3, -2);$$

10.
$$\mathcal{A}(2,2,2)$$
, $\mathcal{B}(-10,2,-6)$, $\mathcal{C}(-7,3,-4)$;

11.
$$\mathcal{A}(0,0,-1)$$
, $\mathcal{B}(-4,-8,-13)$, $\mathcal{C}(9,-3,-16)$;

12.
$$\mathcal{A}(2,2,-1)$$
, $\mathcal{B}(2,6,-9)$, $\mathcal{C}(-1,3,-3)$;

13.
$$\mathcal{A}(-2, -2, -1), \mathcal{B}(-14, -14, 11), \mathcal{C}(-15, -5, 10);$$

14.
$$\mathcal{A}(-2,1,-2)$$
, $\mathcal{B}(-10,-7,-6)$, $\mathcal{C}(-14,-2,1)$;

15.
$$\mathcal{A}(2,-2,-1)$$
, $\mathcal{B}(6,6,-9)$, $\mathcal{C}(7,5,-5)$;

16.
$$\mathcal{A}(2,-2,0)$$
, $\mathcal{B}(10,2,12)$, $\mathcal{C}(10,-4,0)$;

17.
$$\mathcal{A}(-2,-2,0)$$
, $\mathcal{B}(2,-10,-4)$, $\mathcal{C}(1,-10,1)$;

18.
$$\mathcal{A}(0, -2, 2), \mathcal{B}(-8, -10, -6), \mathcal{C}(1, -1, -6);$$

19.
$$\mathcal{A}(-1, -2, -2), \mathcal{B}(3, -6, 6), \mathcal{C}(-2, -5, 0);$$

20.
$$\mathcal{A}(0,1,2)$$
, $\mathcal{B}(0,-7,-6)$, $\mathcal{C}(-6,2,-3)$;

21.
$$\mathcal{A}(2,-1,-2)$$
, $\mathcal{B}(14,-13,-2)$, $\mathcal{C}(14,-7,7)$;

22.
$$\mathcal{A}(-2,0,1)$$
, $\mathcal{B}(-14,12,1)$, $\mathcal{C}(-11,9,-2)$;

23.
$$\mathcal{A}(0,-2,1)$$
, $\mathcal{B}(12,2,5)$, $\mathcal{C}(2,3,1)$;

24.
$$\mathcal{A}(1,-2,-2)$$
, $\mathcal{B}(5,-10,-6)$, $\mathcal{C}(0,-3,-7)$;

25.
$$\mathcal{A}(-1,-1,0)$$
, $\mathcal{B}(7,-9,8)$, $\mathcal{C}(-2,-9,-1)$;

26.
$$\mathcal{A}(0,-1,2)$$
, $\mathcal{B}(-8,-9,-2)$, $\mathcal{C}(-3,-13,5)$;

27.
$$\mathcal{A}(2,-2,1), \mathcal{B}(-2,-10,13), \mathcal{C}(1,-9,10);$$

28.
$$\mathcal{A}(1,-1,0)$$
, $\mathcal{B}(-11,11,12)$, $\mathcal{C}(-11,7,7)$;

29.
$$\mathcal{A}(2,1,-2)$$
, $\mathcal{B}(-6,-3,10)$, $\mathcal{C}(0,6,3)$;

30.
$$\mathcal{A}(-2,1,-1)$$
, $\mathcal{B}(-6,-11,7)$, $\mathcal{C}(-4,-9,4)$;

31.
$$\mathcal{A}(2,0,1), \mathcal{B}(-10,4,5), \mathcal{C}(-3,-1,-2);$$

32.
$$\mathcal{A}(-1,1,-2), \mathcal{B}(-1,-7,2), \mathcal{C}(1,-2,-3);$$

33.
$$\mathcal{A}(-2,2,-1)$$
, $\mathcal{B}(-2,6,3)$, $\mathcal{C}(-3,5,2)$;

34.
$$\mathcal{A}(2,2,-2)$$
, $\mathcal{B}(2,-2,2)$, $\mathcal{C}(4,-1,-3)$;

- 35. $\mathcal{A}(0,2,2)$, $\mathcal{B}(0,6,10)$, $\mathcal{C}(-2,1,5)$;
- 36. $\mathcal{A}(2,-2,0)$, $\mathcal{B}(14,-14,12)$, $\mathcal{C}(1,-6,6)$;
- 37. $\mathcal{A}(-1,2,-1)$, $\mathcal{B}(-5,14,-5)$, $\mathcal{C}(-4,5,0)$;
- 38. $\mathcal{A}(2,2,2)$, $\mathcal{B}(-2,6,-2)$, $\mathcal{C}(1,4,2)$;
- 39. $\mathcal{A}(-2,1,2)$, $\mathcal{B}(10,1,-10)$, $\mathcal{C}(-1,7,-3)$.
 - 2. Даны две прямые
- а) Доказать, что прямые скрещиваются;
- б) составить каноническое уравнение их общего перепендикуляра;
- в) найти точки пересечения общего перепендикуляра с заданными прямыми;
- г) найти расстояние между прямыми (двумя способами).

1.
$$x = 8 + 3t$$
, $y = 26 + 24t$, $z = 7 + 2t$ if $x = -11 + 12t$, $y = -3 + 6t$, $z = 6 - 7t$;

2.
$$x = 7 + 3t$$
, $y = -4 - 2t$, $z = -4 - 2t$ if $x = 1 + t$, $y = -5 + t$, $z = 1 - 4t$;

3.
$$x = 2 + 2t$$
, $y = 4 + 7t$, $z = -4 - t$ if $x = -11 + 8t$, $y = 7 - 8t$, $z = 5t$;

4.
$$x = 1 + 2t$$
, $y = 4 + t$, $z = -2t$ if $x = t$, $y = 2 + t$, $z = 5 - t$;

5.
$$x = 4$$
, $y = 5 + t$, $z = -2 + t$ if $x = 4t$, $y = 4 - t$, $z = -1 - t$;

6.
$$x = -3 + t$$
, $y = -3 + t$, $z = -7 - 2t$ if $x = -6 + 3t$, $y = -2 - t$, $z = -2 - 2t$;

7.
$$x = -3$$
, $y = -5$, $z = 5 + t$ is $x = -1 + t$, $y = -1 - t$, $z = 4$;

8.
$$x = 6 + 11t$$
, $y = -7 - 7t$, $z = -3 + t$ if $x = -14 + 12t$, $y = 15 - 10t$, $z = -9 + 7t$;

9.
$$x = -2 + t$$
, $y = -1$, $z = 6 + t$ if $x = -9 + 13t$, $y = 19 - 21t$, $z = -18 + 16t$;

10.
$$x = 13 + 14t$$
, $y = -19 - 16t$, $z = 4 - t$ if $x = -4$, $y = -10 + 5t$, $z = -4 - t$;

11.
$$x = -3 + t$$
, $y = -6 - 2t$, $z = 1 - 2t$ if $x = -16 + 14t$, $y = 25 - 22t$, $z = 18 - 21t$;

12.
$$x = 13 + 13t$$
, $y = 6 + 3t$, $z = -20 - 22t$ if $x = 3 + 2t$, $y = -4$, $z = 9 - 5t$;

13.
$$x = 7 + 4t$$
, $y = -10 - 11t$, $z = 11 + 14t$ if $x = -6 + 4t$, $y = -4 + 7t$, $z = -2 + 2t$;

14.
$$x = 6 + 4t$$
, $y = 9 + 7t$, $z = 1 + 2t$ if $x = -9 + 7t$, $y = -7 + 11t$, $z = -6 + 6t$;

15.
$$x = 12 + 11t$$
, $y = 2 + 4t$, $z = 9 + 8t$ if $x = -10 + 7t$, $y = -5 + 8t$, $z = 8 - 4t$;

16.
$$x = -4$$
, $y = 4 + 3t$, $z = 4 + 2t$ if $x = -3 + 7t$, $y = 1 + 4t$, $z = -16 + 12t$;

17.
$$x = -3 + t$$
, $y = 4$, $z = 6 + t$ if $x = -2$, $y = 3 + t$, $z = 3$;

18.
$$x = 1 + 2t$$
, $y = 3 + 4t$, $z = 6 + 5t$ if $x = -6 + 2t$, $y = 10 - 12t$, $z = 6 - 3t$;

19.
$$x = -1 + 4t$$
, $y = 8 + 9t$, $z = -8 - 5t$ if $x = 1 + 2t$, $y = -7 + 3t$, $z = 5 - 7t$;

20.
$$x = 4 + 2t$$
, $y = 4 + 4t$, $z = 3t$ if $x = -2 + t$, $y = 3t$, $z = -8 + 3t$;

21.
$$x = 4 + t$$
, $y = 8 + 3t$, $z = -1 + 2t$ if $x = -6 + 9t$, $y = -3 + 6t$, $z = -4 + 4t$;

22.
$$x = 3 + 8t$$
, $y = 8 + 6t$, $z = 21 + 17t$ if $x = 4 + t$, $y = 3 - 3t$, $z = -4 + 4t$;

23.
$$x = 14 + 12t$$
, $y = -5 - 4t$, $z = -12 - 15t$ is $x = -11 + 7t$, $y = 2 - 6t$, $z = 5 - 6t$;

24.
$$x = 6 + t$$
, $y = -4 + t$, $z = -5 - t$ in $x = -5 + t$, $y = 3 + t$, $z = -2 - 2t$;

25.
$$x = 6 + 2t$$
, $y = -27 - 27t$, $z = 22 + 20t$ if $x = -13 + 13t$, $y = -1 - 3t$, $z = 5 - 8t$;

26.
$$x = 8 + 5t$$
, $y = 12 + 12t$, $z = 11 + 8t$ if $x = -6 + 5t$, $y = 9 - 4t$, $z = 6 - 8t$;

27.
$$x = -4 + t$$
, $y = -4 - t$, $z = 0$ if $x = -5 + 7t$, $y = 15 - 11t$, $z = 12 - 14t$;

28.
$$x = 10 + 11t$$
, $y = 17 + 12t$, $z = 22 + 21t$ if $x = -23 + 22t$, $y = -6 + 4t$, $z = -2 + 7t$;

29.
$$x = -4 + t$$
, $y = 6 + 2t$, $z = 3 - t$ is $x = -5 + t$, $y = 6 - 3t$, $z = -1 + 4t$;

30.
$$x = 3 + t$$
, $y = -4 + t$, $z = -5 - t$ и $x = -14 + 15t$, $y = -5 + 8t$, $z = 10 - 7t$.

- 3. Найти уравнение биссектрисы $\mathcal{A}\mathcal{D}$ треугольника \mathcal{ABC} и координаты точки \mathcal{D} .
 - 1. $\mathcal{A}(-4,2,4)$, $\mathcal{B}(-3,1,7)$, $\mathcal{C}(-1,-7,1)$;
 - 2. $\mathcal{A}(-3, -4, -2)$, $\mathcal{B}(-6, -7, 0)$, $\mathcal{C}(-15, -12, -14)$;
 - 3. $\mathcal{A}(3,-2,0)$, $\mathcal{B}(4,-1,2)$, $\mathcal{C}(6,-8,3)$;
 - 4. $\mathcal{A}(-2, -4, -4), \mathcal{B}(-2, -2, -5), \mathcal{C}(2, -4, -6);$
 - 5. $\mathcal{A}(4, -3, -2), \mathcal{B}(5, -1, 0), \mathcal{C}(12, -7, 6);$
 - 6. $\mathcal{A}(-1,0,-3)$, $\mathcal{B}(1,3,-4)$, $\mathcal{C}(5,3,6)$;
 - 7. $\mathcal{A}(1,1,-3), \mathcal{B}(2,4,-5), \mathcal{C}(4,7,6);$
 - 8. $\mathcal{A}(0,1,3), \mathcal{B}(3,-1,0), \mathcal{C}(6,7,-1);$
 - 9. $\mathcal{A}(-2,-1,-2)$, $\mathcal{B}(-1,-1,-4)$, $\mathcal{C}(2,7,-2)$;
 - 10. $\mathcal{A}(4,1,2)$, $\mathcal{B}(2,0,5)$, $\mathcal{C}(0,9,14)$;

11.
$$\mathcal{A}(2, -3, -3), \mathcal{B}(4, -3, -5), \mathcal{C}(-4, -9, -3);$$

12.
$$\mathcal{A}(-3,4,-1)$$
, $\mathcal{B}(-3,1,-3)$, $\mathcal{C}(-12,4,-7)$;

13.
$$\mathcal{A}(3,0,-2)$$
, $\mathcal{B}(4,3,0)$, $\mathcal{C}(5,-4,4)$;

14.
$$\mathcal{A}(1,3,-4), \mathcal{B}(-2,2,-3), \mathcal{C}(5,15,-8);$$

15.
$$\mathcal{A}(-1,0,-3)$$
, $\mathcal{B}(-2,0,-1)$, $\mathcal{C}(-5,-8,-3)$;

16.
$$\mathcal{A}(0,3,1), \mathcal{B}(-3,1,0), \mathcal{C}(-8,7,-11);$$

17.
$$\mathcal{A}(-2,-1,-3)$$
, $\mathcal{B}(1,-1,-4)$, $\mathcal{C}(-2,2,6)$;

18.
$$\mathcal{A}(-1, -2, 2), \mathcal{B}(-2, -1, 4), \mathcal{C}(-5, -10, 6);$$

19.
$$\mathcal{A}(-2, -3, -1), \mathcal{B}(-1, -5, -4), \mathcal{C}(-10, 9, 3);$$

20.
$$\mathcal{A}(1,-1,3)$$
, $\mathcal{B}(2,1,4)$, $\mathcal{C}(7,-4,6)$;

21.
$$\mathcal{A}(-1, -2, 1), \mathcal{B}(1, 1, 4), \mathcal{C}(11, -10, 13);$$

22.
$$\mathcal{A}(-1, -2, -1), \mathcal{B}(0, 0, -4), \mathcal{C}(2, 7, 5);$$

23.
$$\mathcal{A}(-1,-1,-1)$$
, $\mathcal{B}(-2,2,-2)$, $\mathcal{C}(8,2,-4)$;

24.
$$\mathcal{A}(-2, -2, 4), \mathcal{B}(-5, 0, 2), \mathcal{C}(6, 6, -8);$$

25.
$$\mathcal{A}(-3,1,3)$$
, $\mathcal{B}(-4,-2,1)$, $\mathcal{C}(-7,9,-9)$;

26.
$$\mathcal{A}(3,2,-4)$$
, $\mathcal{B}(1,2,-7)$, $\mathcal{C}(-9,10,-4)$;

27.
$$\mathcal{A}(-2,1,4)$$
, $\mathcal{B}(0,-2,2)$, $\mathcal{C}(-11,-5,-2)$;

28.
$$\mathcal{A}(-3, -2, -3), \mathcal{B}(-4, -4, -4), \mathcal{C}(-11, 2, -7);$$

29.
$$\mathcal{A}(0, -3, -3), \mathcal{B}(-1, 0, -3), \mathcal{C}(6, -3, -5);$$

30.
$$\mathcal{A}(0,3,4), \mathcal{B}(2,1,4), \mathcal{C}(0,-1,0);$$

31.
$$\mathcal{A}(-2,4,-4)$$
, $\mathcal{B}(1,6,-4)$, $\mathcal{C}(4,4,5)$;

32.
$$\mathcal{A}(2,4,3)$$
, $\mathcal{B}(4,7,6)$, $\mathcal{C}(14,-4,15)$;

33.
$$\mathcal{A}(-1,4,2)$$
, $\mathcal{B}(1,5,-1)$, $\mathcal{C}(2,13,8)$;

34.
$$\mathcal{A}(0,0,4), \mathcal{B}(-3,1,7), \mathcal{C}(2,6,10);$$

35.
$$\mathcal{A}(-1,2,2)$$
, $\mathcal{B}(0,2,-1)$, $\mathcal{C}(-1,-1,-7)$.

Ответы, указания, решения

- **1.** 1) (1, k);
 - 2) (B, -A).
- **2.** 3x + y 5 = 0, k = -3.
- **3.** x = -1 + 3t, y = 1 + 2t; $\frac{x+1}{3} = \frac{y-1}{2}$.
- **4.** 1) x = 2 3t, y = 3 + t;
 - $2) \ \frac{x-2}{3} = \frac{y-3}{-7};$
 - 3) 3x 5y + 9 = 0;
 - 4) x = 2;
 - 5) y = 3.
- **5.** 1) 2x + 3y 13 = 0;
 - 2) x = -2;
 - 3) y = -4.
- **6.** 1) пересекаются в точке (5,1);
 - 2) параллельны;
 - 3) совпадают.
 - 4) Приравниваем выражения для x и y соответственно (обозначив параметры для разных прямых разными буквами):

$$\begin{cases} 2 - t_1 = 3 + t_2, \\ 3 + 2t_1 = -2 - 3t_2. \end{cases}$$

Система имеет единственное решение $t_1=2,\,t_2=-3,\,$ поэтому прямые пересекаются. Для нахождения точки пересечения, подставим параметр t=2 в параметрическое уравнение первой прямой. Находим точку пересечения (0,7).

- 7. Вначале найдем середину \mathcal{M} стороны \mathcal{BC} . Получаем $\mathcal{M}(1,-3)$. Вектор $\overrightarrow{\mathcal{AM}}$ (-1,2) можно взять в качестве направляющего, поэтому уравнение медианы примет вид $\frac{x-2}{-1} = \frac{y+5}{2}$.
- 8. 1) (k, -1);
 - (A, B).

- **9.** 1) x = 2 + 2t, y = -8 5t;
 - 2) 5x + 2y + 6 = 0;
 - 3) y = -8;
 - 4) x = 2.
- **10.** Опустим на прямую перпендикуляр из точки $\mathcal{M}(5, -8)$. Нормальный вектор прямой (2, -3) является направляющим вектором перпендикуляра, поэтому его уравнение можно записать следующим образом

$$\begin{cases} x = 5 + 2t, \\ y = -8 - 3t. \end{cases}$$

Проекция $\mathcal P$ точки $\mathcal M$ есть точка пересечения прямой и перпендикуляра. Ддя ее нахождения подставим выражения для x и y из уравнения перпендикуляра в уравнение прямой. Получим 2(5+2t)-3(-8-3t)+5=0, откуда t=-3. Подставив найденное значение t в параметрическое уравнение перпендикуляра, найдем проекцию $\mathcal P(-1,1)$. Чтобы найти симметричную точку $\mathcal N$, можно воспользоваться формулой деления отрезка пополам. Другой способ заключается в следующем. На перпендикуляре значение t=0 соответствует заданной точке $\mathcal M$, значение t=-3— ее проекции $\mathcal P$, тогда точке $\mathcal N$ на перпендикуляре должно соответствовать значение t=-6. Подставляя это значение в параметрическое уравнение прямой, получаем $\mathcal N(-7,10)$.

- **11.** 1) $5/\sqrt{13}$;
 - 2) 1;
 - 3) 7;
 - 4) 1.
- 12. $|C_2 C_1|/\sqrt{A^2 + B^2}$.

13.

- 1) $\arccos \frac{1}{5\sqrt{2}}$; 2) $\pi/4$;
- 3) $\pi/2$; 4) $\arcsin \frac{6}{\sqrt{205}}$;
- 5) $\arccos \frac{3}{\sqrt{10}}$.
- **14.** Направляющий вектор высоты перпендикулярен вектору $\overrightarrow{\mathcal{BC}}$ (6,9), поэтому в качестве направляющего вектора можно взять вектор (3, -2). Уравнение высоты \mathcal{AH} примет вид x=-11+3t, y=6-2t. Теперь запишем уравнение прямой \mathcal{BC} : x=-3+2t, y=-8+3t. Найдем точку пересечения прямых \mathcal{AH} и \mathcal{BC} . Для этого рассматриваем систему

$$\begin{cases}
-11 + 3t_1 = -3 + 2t_2, \\
6 - 2t_1 = -8 + 3t_2,
\end{cases}$$

8.2. ПЛОСКОСТЬ И ПРЯМАЯ В ПРОСТРАНСТВЕ

решение которой есть $t_1=4, t_2=2,$ откуда находим точку пересечения $\mathcal{H}(1,-2).$ Теперь легко проверить, что она лежит внутри отрезка \mathcal{BC} и делит его в отношении 2:1.

15

15. В качестве направляющего вектора биссектрисы можно выбрать произвольный ненулевой вектор, коллинеарный вектору $\overrightarrow{AB}/|AB| + \overrightarrow{AC}/|AC|$. Имеем \overrightarrow{AB} (-6,3), \overrightarrow{AC} (1,2). Так как |AB| = 3|AC|, то в качестве направляющего вектора возьмем $a = \overrightarrow{AB}/3 + \overrightarrow{AC}$. Его координаты суть (-1,3). Теперь запишем уравнение биссектрисы: x = 5 - t, y = -4 + 3t, и уравнение прямой BC: x = -1 + 7t, y = -1 - t. Найдем их точку пересечения. Для этого рассматриваем систему

$$\begin{cases} 5 - t_1 = -1 + 7t_2, \\ -4 + 3t_1 = -1 - t_2, \end{cases}$$

решение которой есть $t_1 = t_2 = 3/4$, откуда находим точку пересечения (17/4, -7/4).

16. Решая систему

$$\begin{cases} 13x + 6y + 9 = 0, \\ 4x + 5y - 13 = 0, \end{cases}$$

находим вершину угла $\mathcal{A}(-3,5)$. Чтобы найти уравнение второй стороны угла, выберем точку на первой стороне, скажем (3,-8), и найдем к ней симметричную относительно заданной биссектрисы (11,2) (метод решения этой задачи см. в \mathbb{N} 10). Осталось записать уравнение прямой, проходящей через две точки: $\frac{x+3}{11+3} = \frac{y-5}{2-5}$ или 3x-14y+61=0.

- **17.** Непосредственной подстановкой убеждаемся, что $A_1\alpha+B_1\beta+C_1\gamma=A_2\alpha+B_2\beta+C_2\gamma=0$. Например, $A_1\alpha+B_1\beta+C_1\gamma=A_1(B_1C_2-C_1B_2)-B_1(A_1C_2-C_1A_2)+C_1(A_1B_2-B_1A_2)=A_1B_1C_2-A_1C_1B_2-B_1A_1C_2+B_1C_1A_2+C_1A_1B_2-C_1B_1A_2=0$.
- **18.** 11x 7y z 22 = 0.
- **19.** Haпример, $x = -2 + t_1 + 3t_2$, $y = t_1$, $z = t_1 2t_2$.
- **20.** Например, $\frac{x}{2} = \frac{y+2}{-2} = \frac{z-1}{-3}$; x+y+2=0, 3x+2z-2=0.
- **21.** Например, $x 1 = \frac{y}{11} = \frac{z}{7}$; x = 1 + t, y = 11t, z = 7t.
- **22.** 1) $x = 2 3t_1 + 5t_2$, $y = 3 + 4t_1 4t_2$, $z = -7 + t_1 4t_2$; 2) -2x y + z + 14 = 0;
 - 3) z = -7.
- **23.** 1) $\frac{x-2}{2} = \frac{y-3}{5} = \frac{z+7}{-1}$;
 - 2) 2x 3y z 2 = 0, 3x z 13 = 0;
 - 3) x = 2, y = 3.
- **24.** 1) $x-1=\frac{y-3}{-6}=\frac{z+3}{-2}$;

2)
$$9x + 4z + 16 = 0$$
, $y = 5$;

3)
$$y = 5$$
, $z = -3$.

25. 1)
$$2x - y - z - 5 = 0$$
;

2)
$$3x - 4y - 23z - 22 = 0$$
;

3) точки лежат на одной прямой и не задают плоскость.

26.
$$\frac{x-2}{3} = \frac{y-1}{2} = \frac{z-9}{7}$$
.

27.
$$\frac{x}{2} + \frac{y}{3} + \frac{z}{7} = 1$$
.

- **28.** 1) Плоскости пересекаются. Уравнение линии пересечения: $\frac{x-2}{1} = \frac{y-1}{2} = \frac{z-1}{1}$.
 - 2) Плоскости параллельны.
 - 3) Плоскости совпадают.
 - 4) Плоскости пересекаются. Уравнение линии пересечения: $\frac{x-1}{-4} = \frac{y-2}{9} = \frac{z-1}{5}$.
 - 5) Плоскости пересекаются. Уравнение линии пересечения: $\frac{x-1}{7} = \frac{y-1}{1} = \frac{z-2}{-8}$.
 - 6) Плоскости совпадают.
- 29. 1) Прямая лежит в плоскости;
 - 2) прямая параллельна плоскости;
 - 3) прямая лежит в плоскости;
 - 4) пересекаются в точке $(-2, \frac{49}{3}, 11)$;
 - 5) пересекаются в точке $\left(-\frac{5}{3}, \frac{11}{6}, \frac{13}{6}\right)$.
- 30. 1) Прямые совпадают;
 - 2) прямые пересекаются в точке (-2, -4, 9) и лежат в плоскости 2x+y+z-1=0;
 - 3) прямые параллельны и лежат в плоскости 3x 6y 8z + 3 = 0;
 - 4) прямые скрещиваются;
 - 5) прямые пересекаются в точке (1,2,5) и лежат в плоскости y-z+3=0.
- **31.** 4x + 5y z 17 = 0.
- **32.** 8x 3y + 5z 2 = 0.
- **33.** x + 6y + 4z 16 = 0.
- 34. Прямую зададим как пересечение двух плоскостей: проходящую через точку

(-1, -4, 5) и параллельную прямой $\frac{x-2}{1} = \frac{y-4}{2} = \frac{z+4}{-4}$:

$$\begin{vmatrix} x+1 & y+4 & z-5 \\ 1 & 2 & -4 \\ 3 & 8 & -9 \end{vmatrix} = 14x - 3y + 2z - 8 = 0,$$

и проходящую через точку (-1,-4,5) и параллельную прямой $\frac{x-2}{2}=\frac{y-1}{3}=\frac{z+3}{-5}$:

$$\begin{vmatrix} x+1 & y+4 & z-5 \\ 2 & 3 & -5 \\ 3 & 5 & -8 \end{vmatrix} = x+y+z=0.$$

Итак, найдена прямая

$$\begin{cases} 14x - 3y + 2z - 8 = 0, \\ x + y + z = 0. \end{cases}$$

Ее каноническое уравнение: $\frac{x+1}{5} = \frac{y+4}{12} = \frac{z-5}{-17}$.

35. Прямую зададим как пересечение двух плоскостей: плоскость, пересекающую прямую $\frac{x+5}{4} = \frac{y-3}{-5} = \frac{z-3}{-1}$ и параллельную прямой $\frac{x-7}{1} = \frac{y}{-7} = \frac{z+3}{5}$:

$$\begin{vmatrix} x+5 & y-3 & z-3 \\ 4 & -5 & -1 \\ 1 & -7 & 5 \end{vmatrix} = -32x - 21y - 23z - 28 = 0,$$

и плоскость, пересекающую прямую $\frac{x+3}{5}=\frac{y-3}{-3}=\frac{z+1}{-3}$ и параллельную прямой $\frac{x-7}{1}=\frac{y}{-7}=\frac{z+3}{5}$:

$$\begin{vmatrix} x+3 & y-3 & z+1 \\ 5 & -3 & -3 \\ 1 & -7 & 5 \end{vmatrix} = -36x - 28y - 32z - 56 = 0.$$

Итак, найдена прямая

$$\begin{cases} 32x + 21y + 23z + 28 = 0, \\ 9x + 7y + 8z + 14 = 0. \end{cases}$$

Ee каноническое уравнение: $\frac{x-2}{1} = \frac{y}{-7} = \frac{z+4}{5}$.

36. Возможны два случая: указанные точки лежат по одну сторону от заданной плоскости или по разные стороны. В первом случае искомую плоскость найдем как плоскость, проходящую через заданную прямую и параллельную вектору $\mathcal{AB}'(2,-4,6)$ (или ему коллинеарному (1,-2,3)). Уравнение плоскости:

$$\begin{vmatrix} x-3 & y-2 & z+5 \\ 2 & -3 & 5 \\ 1 & -2 & 3 \end{vmatrix} = x-y-z-6=0.$$

Во втором случае искомую плоскость найдем как плоскость, проходящую через заданную прямую и точку (4,2,2), делящую отрезок AB пополам. Уравнение плоскости:

$$\begin{vmatrix} x-3 & y-2 & z+5 \\ 2 & -3 & 5 \\ 1 & 0 & 7 \end{vmatrix} = -3(7x+3y-z-32) = 0.$$

37. 1)
$$\frac{x-1}{2} = \frac{y-2}{-3} = \frac{z-3}{5}$$
;

2)
$$\frac{x-1}{2} = \frac{z-3}{-1}$$
, $y = 2$;

3)
$$y = 2, z = 3$$

38. 1)
$$x - 2y + 4z - 13 = 0$$
;

2)
$$3x + y + 2z - 5 = 0$$
;

3)
$$z = 2$$
.

39. 1)
$$x + y + z - 7 = 0$$
;

2)
$$3x + 8y + 23z - 34 = 0$$
;

3)
$$-y - 4z + 5 = 0$$
.

40. Плоскость 3x - y + z - 11 = 0.

41. 1)
$$-5/3$$
; 2) 7.

43. 1)
$$\sqrt{\frac{17}{7}}$$
; 2) $\sqrt{35/7}$; 3) $7/\sqrt{5}$.

2)
$$\sqrt{35/7}$$
; 3) $7/\sqrt{5}$.

- 44. 1) Прямые скрещиваются. Расстояние равно $2\sqrt{2}/3$. 2) Прямые скрещиваются. Расстояние равно $3\sqrt{14}/2$. 3) Прямые параллельны. Расстояние равно 1.

1)
$$\arccos \frac{1}{3\sqrt{3}}$$
; 2) $\arccos \frac{\sqrt{3}}{5}$;

8.2. ПЛОСКОСТЬ И ПРЯМАЯ В ПРОСТРАНСТВЕ

19

3)
$$\pi/2$$
; 4) 0.

46.

1)
$$\arccos \frac{3}{\sqrt{55}}$$
; 2) $\arccos \frac{2}{\sqrt{255}}$;

3)
$$\pi/2$$
; 4) 0. **47.**

1)
$$\arcsin \frac{3}{\sqrt{45}}$$
;

2)
$$\pi/2$$
; 3) 0.

48. Уравнение высоты: $\frac{x-2}{2} = \frac{y-2}{1} = \frac{z-7}{5}$. Точка пересечения высоты с прямой \mathcal{BC} имеет координаты (0,1,2) и лежит внутри стороны \mathcal{BC} .

49.
$$\frac{x+3}{4} = \frac{y+2}{3} = \frac{z-5}{-5}$$
, $(-1/3, 0, 5/3)$.